• News
  • Film and TV
  • Music
  • Tech
  • Features
  • Celebrity
  • Politics
  • Weird
  • Community
  • Advertise
  • Terms
  • Privacy & Cookies
  • LADbible Group
  • LADbible
  • SPORTbible
  • GAMINGbible
  • Tyla
  • UNILAD Tech
  • FOODbible
  • License Our Content
  • About Us & Contact
  • Jobs
  • Latest
  • Topics A-Z
  • Authors
Facebook
Instagram
X
Threads
TikTok
YouTube
Submit Your Content
Stephen Hawking's famous black hole paradox looks to finally have a solution

Home> News

Published 16:01 2 Apr 2023 GMT+1

Stephen Hawking's famous black hole paradox looks to finally have a solution

The so-called 'Hawking information paradox' may be one step closer to being resolved.

Stefania Sarrubba

Stefania Sarrubba

The 'Hawking radiation' emitted by black holes may be able to carry crucial information, a new study suggests.

Scientists may have just found the solution to one of astrophysics most mind-boggling mysteries concerning black holes, also known as the 'Hawking information paradox'.

A study published in the journal Physics Letters B last month offers a resolution to a problem the late physicist Stephen Hawking was working on in his final years.

Hawking's research showed that black holes emit radiation — colloquially known as 'quantum hair' — in the form of thermal energy. Due to its thermal nature, this radiation isn't able to carry information about the stars that birthed the black holes.

Advert

This means that the leaking of this radiation would ultimately cause the black hole to completely evaporate, leaving a vacuum behind and causing a loss of information - this has come to be known as 'Hawking radiation'.

In 1976, Stephen Hawking suggested that black holes evaporate, thus destroying information about their origin.
Storms Media Group / Alamy Stock Photo

These findings, however, are in contrast with the laws of quantum mechanics, stating that information cannot be destroyed and that an object’s final state can still retain clues about its origin, hence generating the paradox.

Research from study authors Xavier Calmet, a professor of physics at the University of Sussex, and Steve Hsu, a professor of theoretical physics at Michigan State University, introduces a tweak to Hawking's calculations which would make the radiation 'non-thermal,' and thus capable of carrying information.

"[This research] is the final nail in the coffin for the paradox because we now understand the exact physical phenomenon by which information escapes a decaying black hole," Calmet told Live Science.

He also noted how, according to the laws of quantum physics, information cannot be created nor destroyed, comparing the life of a black hole to a movie that 'could be rewound'.

"Starting from the radiation we should be able to rebuild the original black hole and then eventually the star," he continued.

Calmet and Hsu reassessed Hawking's theory factoring in the effects of 'quantum gravity,' that is the description of gravity according to the principles of quantum mechanics.

"While these quantum gravitational corrections are minuscule, they are crucial for black hole evaporation," Calmet explained.

"[This research] is the final nail in the coffin for the paradox because we now understand the exact physical phenomenon by which information escapes a decaying black hole."
Pixabay / AlexAntropov86

"We were able to show that these effects modify Hawking radiation in such a way that this radiation becomes non-thermal. In other words, factoring in quantum gravity the radiation can contain information."

Despite Calmet and Hsu having identified the exact physical phenomenon by which information escapes the black hole via Hawking radiation, it is currently impossible to retrieve it as there isn't an instrument sensitive enough to measure Hawking radiation, which is a purely theoretical concept.

Calmet acknowledged that, at present, there is no way for astrophysicists to measure the effect the researchers suggest as it is minuscule.

According to the scientist, studying simulations of black holes in labs on Earth incorporating their mathematical modeling of Hawking radiation and black holes would be the way forward.

Featured Image Credit: Jason Bye / Alamy Stock Photo / NASA

Topics: Space, Science, Weird

Stefania Sarrubba
Stefania Sarrubba

Advert

Advert

Advert

Choose your content:

10 hours ago
11 hours ago
12 hours ago
  • Cherokee Sheriff's Office
    10 hours ago

    Assistant principal arrested after allegedly using shocking method at Walmart self-checkout to steal 98 items

    The 98 items were reportedly worth around $1,000

    News
  • CBC
    11 hours ago

    Catherine O’Hara's Schitt's Creek co-stars pour in heartfelt tributes as actress dies aged 71

    Schitt's Creek ran for six season and won numerous Emmy Awards

    Celebrity
  • Victor J. Blue/Bloomberg via Getty Images
    12 hours ago

    ICE agents claim man detained with smashed face and skull injuries 'ran headfirst into a wall'

    Apparently nurses who treated the man doubted federal immigration officers' story

    News
  • NBC
    12 hours ago

    Paris Hilton shares exactly where she and Lindsay Lohan stand now following years-long 'feud'

    Paris Hilton and Lindsay Lohan were once close friends

    Celebrity
  • Stephen Hawking and Einstein’s decade-old predictions finally proved right after breakthrough black hole collision
  • Scientists simulated a black hole in a lab to test Stephen Hawking's theory and had surprising results
  • Scientist claims to have found the 'exact location of Heaven' with mind-blowing theory
  • Scientists left baffled after discovering lone black hole floating through space